De-N-methylpamamycin-593A and B, New Pamamycin Derivatives Isolated from Streptomyces alboniger

IKUKO KOZONE, NATSUNO CHIKAMOTO, HIROSHI ABE and MASAHIRO NATSUME*

Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan

(Received for publication December 10, 1998)

Pamamycin-607 (MW 607) was isolated from the producing strain of Streptomyces alboniger IFO 12738 as an aerial mycelium-inducing substance. It is a sixteen-membered macrodiolide with a dimethylamino group-bearing side chain^{1,2}. We earlier isolated 14 homologues of pamamycin having different substituents at $R_1 \sim R_5$ and ranging in MW from 593 to 649, and confirmed that a change from CH₃ to CH₂CH₃ at R₃ or R_4 caused loss of aerial mycelium-inducing activity³⁾. We also reported that desdimethylaminopamamycin-607 prepared by Hofmann degradation and subsequent catalytic hydrogenation entirely lost this activity⁴). We therefore investigated the structure-activity relationship of the side chain part and continued our search for pamamycin-related compounds in cultured S. alboniger. We here report the isolation and structures of de-Nmethylpamamycin-593A and B (Fig. 1).

A crude pamamycin fraction³⁾ showed a new Dragendorff reaction-positive spot at Rf 0.30 along with spots of pamamycins (Rf 0.66) on TLC analysis (EtOAc-*n*-hexane-diisopropylamine, 3:7:0.5). This crude fraction (40 mg obtained from 14 liters of cultured material) was chromatographed in a silica gel column which first was flushed with the solvent system EtOAc-*n*-hexane-(*i*-Pr)₂NH (2:8:0.5) to wash out the pamamycins then with the same solvent system (5:5:0.5) to elute the new compounds. The fraction containing the new compounds was chromatographed by ODS-HPLC (0.2% AcONH₄ in 90% aq. MeOH) then by NH₂-HPLC (*n*-pentane-MeOH-*n*-BuNH₂, 100:0.5: 0.5), giving two new compounds (2.55 and 2.38 mg).

These compounds seemed to be pamamycin-related ones, because EI-MS analysis showed an M⁺ ion at m/z593 and an M⁺-43 ion at m/z 550, similar to the pattern of pamamycin-593. There was, however, a characteristic peak at m/z 86 rather than at m/z 100 the peak for pamamycins. Because the fragment ion of the pamamycins with m/z 100 is derived from α -cleavage of the dimethylamino group (fragment ion x in Table 1), these new compounds are thought to be de-N-methyl derivatives (Rx = CH₃, Ry = H, Rz = n-C₃H₇ in Table 1) or derivatives with the dimethylamino group and the shorter alkyl side chain (Rx = Ry = CH₃, Rz = C₂H₅) of pamamycin.

To confirm this, the incorporation of methioninemethyl- d_3 into pamamycins and the new compounds present in cultures of *S. alboniger* (1 mg/ml medium) were examined. Pamamycin-607 obtained from the feeding

Fig. 1. Structures of pamamycin-607 and de-N-methylpamamycin-593.

	Addition of methionine- <i>methyl</i> - d_3		Substitue	ents	Fragmentation (m/z)			
		R _x	R _y	R _z	M^+	x	у	
Pamamycin-607		CH ₃	CH ₃	n-C ₃ H ₇	607	100	564	
• •		$\int CD_3$	CH ₃	$n-C_3H_7$	610	103	567	
	+	CD,	CD_3	$n-C_3H_7$	613	106	570	
De-N-methylpamamycin-593A		CH ₃	н	$n-C_3H_7$	593	86	550	
and B	+ .	CD_3	Н	$n-C_3H_7$	596	89	553	

Table 1. MS fragmentation of pamamycin-607 and de-N-methylpamamycin-593.

Table 2. MS fragmentation of large diol fragments obtained from pamamycin-607 and de-*N*-methylpamamycin-593A and B.

	Substituents				Fragmentions (m/z)								
	R ₁	R ₂	R ₃	R ₆	M ⁺	a	b	c	d + 1	e	f	g	h
Pamamycin-607	CH ₃	CH ₃	CH ₃	CH ₃	399	340	270	242	213	184	100	129	356
De-N-methylpamamycin-593A	CH ₃	CH_3	CH ₃	H	385	326	256	228	199	170	86	129	342
De-N-methylpamamycin-593B	CH ₂ CH ₃	Н	CH ₃	Н	385	312	242	228	199	170	86	143	342

experiment had isotope peaks of 3 and 6 units larger mass at the M^+ ion as well as fragment ions x and y (Table 1). This resulted from the replacement of CH_3 at Rx and Ry with CD_3 , confirmation that the two methyl groups on the dimethylamino group of pamamycin are derived from methionine. The two new compounds obtained from the feeding experiment also had isotope peaks of 3 units larger mass at the M^+ ion and frag-

ment ions x and y, but no peaks of 6 units larger mass (such as m/z 599, 92 or 556) were detected. These findings confirm that the two new compounds are de-*N*-methyl derivatives of pamamycin but not derivatives with the shorter alkyl side chain. We named them de-*N*-methylpamamycin-593A and B (Fig. 1).

The alkyl substituents $R_1 \sim R_5$ of de-N-methylpamamycin-593A and B were identified by GC-MS analysis of the respective diol products obtained by $LiAlH_4$ degradation of each compound^{2,3)}. The respective small diol fragments from de-*N*-methylpamamycin-593A and B were identical to those obtained from pamamycin-607 and 621B by GC-MS analysis. The structures of the large diol fragments were determined by comparing their fragment ions in the MS spectra with those of large fragments obtained from known pamamycins (Table 2). De-*N*-methylpamamycin-593A has the same alkyl substituent pattern as pamamycin-607 (Fig. 1).

De-*N*-methylpamamycin-593A and B showed aerial mycelium-inducing activity comparable to that of pamamycin-607. Their growth-inhibitory activity, however, was only half that of pamamycin. These findings support the idea³⁾, based on the structure-activity relationship of $R_1 \sim R_5$ in pamamycins, that aerial mycelium-inducing and growth-inhibitory activities are produced by different mechanisms.

We now are investigating ways to improve the yield of the de-*N*-methyl derivatives using methylation inhibitors to search for dide-*N*-methyl derivatives. Preparation of various compounds by chemical modification of these pamamycin derivatives will help to clarify the structure-activity relationship of the side chain and the mechanism of aerial mycelium-induction by pamamycin.

References

- KONDO, S.; K. YASUI, M. NATSUME, M. KATAYAMA & S. MARUMO: Isolation, physico-chemical properties and biological activity of pamamycin-607, an aerial mycelium-inducing substance from *Streptomyces alboniger*. J. Antibiotics 41: 1196~1204, 1988
- KONDO, S.; K. YASUI, M. KATAYAMA, S. MARUMO, T. KONDO & H. HATTORI: Structure of pamamycin-607, an aerial mycelium-inducing substance of *Streptomyces alboniger*. Tetrahedron Lett. 28: 5861~5864, 1987
- NATSUME, M.; J. TAZAWA, K. YAGI, H. ABE, S. KONDO & S. MARUMO: Structure-activity relationship of pamamycins: Effect of alkyl substituents. J. Antibiotics 48: 1159~1164, 1995
- NATSUME, M.; A. HONDA, Y. OSHIMA, H. ABE, S. KONDO, F. TANAKA & S. MARUMO: Roles of the dimethylamino group and macrodiolide ring of pama-mycin-607 in its aerial mycelium-inducing activity. Biosci. Biotech. Biochem. 59: 1766~1768, 1995